
__
 UTDallas, Jonsson School of Engineering and Computer Science

Dr. Mark C. Paulk
Mark.Paulk@utdallas.edu, Mark.Paulk@ieee.org

An Introduction to Software
Architecture and Design II

mailto:Mark.Paulk@utdallas.edu
mailto:Mark.Paulk@ieee.org

Some More Architectural Questions

How do we document architectures?

The agile methods have deprecated design… or at least

design documentation.

• If using agile, do we need to worry about architecture?

• What level of architectural documentation is needed /

appropriate?

If architecture should be viewed from the system’s

goals, how do we get those goals?

• How can we select architecture tradeoffs in light of

business goals?

What is the future of architecture?
2

An Example Architecture

See wiki.sei.cmu.edu/sad/ for an example of a

software architecture.

• Adventure Builder – Software Architecture

Document

Includes

• use cases (4)

• module views (5)

• C&C views (3)

• allocation views (2)

Example software architecture done for Documenting

Software Architectures, Views and Beyond, Second Edition

(2010) by P. Clements, et al.
3

Problem Source

Adventure Builder Reference Application

• Adventure Builder is a fictitious company that

sells adventure packages for vacationers over

the Internet.

An adapted version of the Adventure Builder

Reference application.
- developed in the context of the Java BluePrints

program at Sun Microsystems

- functionality is easy to understand

- source code, documentation, and other artifacts are

publicly available for download.

- Singh book on Web services (2004) explains the

design and implementation of the application

4

Use Cases (UC1)

The user can visit the Adventure Builder Web site

and browse the catalog of travel packages. Includes
- flights to specific destinations

- lodging options

- activities that can be purchased in advance

Activities include
- mountain biking

- fishing

- surfing classes

- hot air balloon tours

- scuba diving

The user can select transportation, accommodation,

and various activities to build his/her own adventure

trip.
5

Use Cases (UC2)

The user can place an order for a vacation

package.

To process this order, the system has to interact

with several external entities.
- A bank will approve the customer payment.

- Airline companies will provide the flights.

- Lodging providers will book the hotel rooms.

- Businesses that provide vacation activities will

schedule the activities selected by the customer.

6

Use Cases (UC3)

After an order is placed, the user can return to

check the status of his/her order.
- This is necessary because some interactions with

external entities are processed in the background

and may take hours or days to complete.

7

Use Cases (UC4)

The internal system periodically interacts with its

business partners
- transportation

- lodging

- activity providers

to update the catalog with the most recent

offerings.

8

Use Cases (A Use Case Context Diagram)

9

Quality Attribute Scenario
Modifiability

A new business partner (airline, lodging, or

activity provider) that uses its own web services

interface is added to the system in no more than

10 person-days of effort for the implementation.

The business goal is easy integration with new

business partners.

10

Quality Attribute Scenario
Performance

A user places an order for an adventure travel

package to the Consumer Web site.

The user is notified on screen that the order has

been successfully submitted and is being

processed in less than five seconds.

11

Quality Attribute Scenario
Performance

Up to 500 users click to see the catalog of

adventure packages following a random

distribution over 1 minute

• the system is under normal operating

conditions

• the maximal latency to serve the first page of

content is under 5 seconds

• average latency for same is less than 2

seconds

12

Quality Attribute Scenario
Reliability

The Consumer Web site sent a purchase order

request to the order processing center (OPC).

The OPC processed that request but didn’t reply

to Consumer Web site within five seconds

• the Consumer Web site resends the request to

the OPC

The OPC receives the duplicate request

• the consumer is not double-charged

• data remains in a consistent state

• the Consumer Web site is notified that the

original request was successful

one hundred percent of the time
13

Quality Attribute Scenario
Security

Credit approval and payment processing are

requested for a new order.

In one hundred percent of the cases

• the transaction is completed securely

• cannot be repudiated by either party

The business goals are to provide customers

and business partners confidence in security

and to meet contractual, legal, and regulatory

obligations for secure credit transactions.

14

Quality Attribute Scenario
Security

The OPC experiences a flood of calls through the

Web Service Broker endpoint that do not

correspond to any current orders.

In one hundred percent of the times, the system

• detects the abnormal level of activity

• notifies the system administrator

• continues to service requests in a degraded

mode

15

Quality Attribute Scenario
Availability

The Consumer Web site is available to the user

24x7.

If an instance of OPC application fails, the fault is

detected

• the system administrator is notified in 30

seconds

• the system continues taking order requests

• another OPC instance is created

• data remains in consistent state

16

Views Template

Primary presentation (graphic)

Element catalog

Context diagram

Variability guide

Rationale

Related views

17

Top Level Module Uses View (1)

18

Consumer Website

The web-based user interface of the Adventure Builder is

implemented in this module

• lets the user browse the catalog of travel packages

• place a new purchase order

• track the status of existing orders

• creates purchase orders based on user input and

passes them to OpcApp for processing

• uses an implementation of the Model View Controller

pattern called the Web Application Framework (waf)
- model implemented using Entity beans

- controller implemented using servlets

- view is a collection of JSPs and static HTML pages

• part of the client-facing code is implemented using the

GWT framework

19

Order Processing Center Application
OpcApp

The business logic of the Adventure Builder is

implemented in this module.
- Accepting purchase order requests from the

ConsumerWebsite for processing by hosting the

Purchase Order Web Service.

- Provide a mechanism for the Consumer Website to

query the current status of a purchase order by

hosting the Order Tracking Web Service.

- Communicate with external suppliers to process and

maintain the status of a purchase order.

- Upon completion of processing a purchase order,

send an email to the customer of its success or

failure.

20

OPC Module Decomposition View (2)

21

Rationale

The choice of EJBs in the implementation,

including session beans, message-driven beans

and entity beans is based on:

• Developers are familiar with EJB development

and component-based development.

• These highly modular EJB components

promote reuse.

22

OPC Module Uses View (3)

23

Workflowmanager Module Uses View (4)

24

Data Model (5)

25

Top Level SOA View (C&C 1)
Informal Notation

26

Top Level SOA View (C&C 1)
UML

27

Top Level SOA View (C&C 1)
soapatterns.org Notation

28

Consumer Website Multi-Tier View (C&C 2)

29

OPC View (C&C 3) UML

30

Deployment View (Allocation 1)
Informal Notation

31

Deployment View (Allocation 1) UML

32

Install View (Allocation 2)

33

What Is An “Agile Method”?

A software engineering “methodology” that

follows the Agile Manifesto?

A method that supports responding rapidly to

changing requirements?
- Mark Paulk

Does an agile method necessarily imply

• Evolutionary / iterative / incremental

development?

• Empowerment / participation of the

development team?

• Active collaboration with the customer?

• …

34

35

Agile Manifesto

We are uncovering better ways of developing software by doing it and

helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

 That is, while there is value in the items on the right, we value the items

on the left more.

Kent Beck

Mike Beedle

Arie van Bennekum

Alistair Cockburn

Ward Cunningham

Martin Fowler

James Grenning

Jim Highsmith

Andrew Hunt

Ron Jeffries

Jon Kern

Brian Marick

Robert C. Martin

Steve Mellor

Ken Schwaber

Jeff Sutherland

Dave Thomas

Architecture in an Agile Context

The best teams may be self-organizing, but the

best architectures still require technical skill,

deep experience, and deep knowledge.

A focus on early and continuous release of

software, where “working” is measured in terms

of customer-facing features, leaves little time for

addressing the kinds of cross-cutting concerns

and infrastructure critical to a high-quality large-

scale system.

The issue is not agile vs architecture but how to

best blend agile and architecture…

36

37

Building the Foundation (Schwaber)

0

20

40

60

80

100

Sprint

E
ff

o
rt

Architecture & Infrastructure

Business Value

Documentation and YAGNI

Expect the greatest agile friction from evaluation and

documentation.

Technical documentation principle: write for the

reader.

• No reader → no documentation

The Views and Beyond approach (Clements 2002)
- uses the architectural view as the “unit” of documentation

- prescribes producing a view if and only if it addresses

substantial concerns of an important stakeholder

community

- the view selection method prescribes producing the

documentation in prioritized stages to satisfy the needs of

the stakeholders who need it now

38

Guidelines for Agile Architecture
(Booch)

All good software-intensive architectures are agile.
- a successful architecture is resilient and loosely coupled

- composed of a core set of well-reasoned design decisions

- contains some “wiggle room” that allows modifications to be made

and refactorings to be done

An effective agile process will allow the architecture to grow

incrementally as the system is developed and matures.
- decomposability

- separation of concerns

- near-independence of the parts

The architecture should be visible and self-evident in the code
- make the design patterns, cross-cutting concerns, and other important

decisions obvious, well communicated, and defended

- may, in turn, require documentation

- “socialize” the architecture

39

Tradeoff Advice

Large and complex system with relatively stable

and well-understood requirements

• do a large amount of architecture work up

front

Big projects with vague or unstable requirements

• quickly design a complete candidate

architecture

• Cockburn’s Crystal Clear “walking skeleton”

Smaller projects with uncertain requirements,

• try to get agreement on the central patterns

40

Documenting Software Architectures

If it is not written down, it does not exist.

• Philippe Kruchten

If you don’t have it in writing, I didn’t make a

commitment.
- mcp

(A lack of planning on your part does not constitute

a crisis on my part.)
- mcp

Architecture has to be communicated in a way to let

its stakeholders use it properly to do their jobs.

41

Uses of Architecture Documentation

As a means of education

• introducing people to the system

As a primary vehicle for communication among

stakeholders

• including the architect in the project’s future

As the basis for system analysis and

construction

42

Notations

Informal notations
- general-purpose diagramming and editing tools and visual

conventions

Semiformal notations
- a standardized notation that prescribes graphical elements

and rules of construction, e.g., UML

Formal notations
- has a precise (usually mathematically based) semantics

- formal analysis of both syntax and semantics is possible

- generally referred to as architecture description languages

- the use of such notations is rare

43

Module Views

A module is an implementation unit that provides

a coherent set of responsibilities.

The relations that modules have to one another

include is part of, depends on, and is a.

It is unlikely that the documentation of any

software architecture can be complete without at

least one module view.

44

Component-and-Connector Views

Show elements that have some runtime presence
- processes, objects, clients, servers, and data stores

Include as elements the pathways of interaction
- communication links and protocols, information

flows, and access to shared storage

Components have interfaces called ports.

Connectors have roles, which are its interfaces,

defining the ways in which the connector may be

used by components to carry out interaction.

45

Allocation Views

Describe the mapping of software units to elements

of an environment in which the software is developed

or in which it executes.

The relation in an allocation view is allocated to.

The usual goal of an allocation view is to compare

• the properties required by the software element

with

• the properties provided by the environmental

elements

to determine whether the allocation will be successful

or not.

46

Architectures Are Abstractions

Cannot be seen in the low-level implementation

details

Tools aggregate abstractions

• not a panacea

• no programming language construct for layer

or connector or …

Architecture reconstruction is an interpretive,

interactive, iterative process

Workbench – open, integration framework

47

UML

The Unified Modeling Language (UML) is a visual

language for specifying, constructing, and

documenting the artifacts of systems.
- Object Management Group (OMG)

- UML 2.0 Infrastructure Specification

A model is a set of UML diagrams that represent

various aspects of the software product.

• UML is the tool that we use to represent

(model) the target software product

UML profiles

• specialized subsets of the notation for

common subject areas
- EJB profile for Enterprise JavaBeans

48

UML Diagrams

49

Applying UML

UML as sketch

• informal and incomplete diagrams (often hand

drawn on whiteboards) created to explore

difficult parts of the problem or solution space

• emphasized in agile modeling

UML as blueprint

• relatively detailed design diagrams used for

reverse engineering or code generation

UML as programming language

• complete executable specification of a

software system in UML

50

Monopoly Case Study (Larman)

Use cases aren’t always best for behavior requirements…

51

Initial Monopoly Domain Model

52

If someone wants the model maintained… redraw using a CASE tool.

Who is going to use the updated model and why?

Monopoly Partial Domain Model

53

Static and Dynamic UML Diagrams

54

SSD for a PlayMonopolyGame Scenario

55

Documenting an Architecture

Case study of ~200KSLOC open source product

Very little architectural documentation

Team reverse-engineered the architecture (2-3

person weeks of effort) and provided the

architecture to the developers
- system could be characterized as poor quality

architectural design (my opinion)

R. Kazman, D. Goldenson, I. Monarch, W. Nichols, and G. Valetto,

“Evaluating the Effects of Architectural Documentation: A Case

Study of a Large Scale Open Source Project,” IEEE Transactions

on Software Engineering, March 2016.

56

Reverse-Engineered Module
Relationships in HDFS (Kazman 2016)

57

Documented Module Relationships
in HDFS (Kazman 2016)

58

Value of Architecture Documentation

“Committers” did not need or value the

architecture documentation.
- system was small enough to keep architectural details

in their heads

“Outsiders” were promoted to “committers” more

quickly using the architecture documentation.
- decentralization occurred

- developers looked at the documentation rather than

asking one of the committers about the architecture

Committers were unwilling to maintain the

architecture documentation.
- need to use tools to automatically extract and maintain

architectural information

59

Architecturally Significant
Requirements (ASRs)

Requirements documents

• most of what is in a requirements specification

does not affect the architecture

• much of what is useful to an architect is not in

even the best requirements document

• ASRs often derive from business goals in the

development organization

• excavation and archaeology is required to dig

ASRs from requirements documents

60

61

Interviewing Stakeholders

Architects often have good ideas what quality

attributes are exhibited by similar systems and

are reasonable.

Stakeholders often have no idea what quality

attributes they want in a system.

Results of stakeholder interviews

• a list of architectural drivers

• a set of quality attribute scenarios that the

stakeholders (as a group) prioritized

62

Quality Attribute Workshop

1) QAW Presentation and Introductions

2) Business/Mission Presentation

3) Architectural Plan Presentation

4) Identification of Architectural Drivers

5) Scenario Brainstorming

6) Scenario Consolidation

7) Scenario Prioritization

8) Scenario Refinement

63

Gathering ASRs by
Understanding the Business Goals

Business goals are the reason for building a

system.
- often the precursor of requirements that may or may

not be captured in a requirements specification

Business goals often lead to quality attribute

requirements.
- every quality attribute requirement should originate

from some higher purpose that can be described in

terms of added value

Business goals may directly affect the

architecture without precipitating a quality

attribute requirement at all.

64

Pedigreed Attribute eLicitation Method
(PALM)

Day and a half workshop attended by architects

and stakeholders who can speak to the business

goals of the organizations involved

1) PALM overview presentation

2) Business drivers presentation

3) Architecture drivers presentation

4) Business goals elicitation

5) Identification of potential quality attributes

from business goals

6) Assignment of pedigree to existing quality

attribute drivers

7) Exercise conclusion

65

Utility Tree

Begins with the word “utility” as the root node.

List the major quality attributes that the system

is required to exhibit.

• under each quality attribute, record a specific

refinement of that QA

• under each refinement, record the appropriate

ASRs (usually expressed as QA scenarios)

Evaluate against two criteria

• the business value of the candidate ASR

• the architectural impact of including it
- must-have, important, nice-to-have

66

Tying the Methods Together

If you have a requirements process that gathers,

identifies, and prioritizes ASRs, consider yourself

lucky…

If nobody has captured the business goals behind

the system you’re building, then a PALM exercise.

If you feel that important stakeholders have been

overlooked, capture their concerns through

interviews.

• Quality Attribute Workshop

Building a utility tree is a good way to capture ASRs

along with their prioritization.

67

Designing an Architecture

The building blocks for designing a software

architecture:

• locating architecturally significant

requirements

• capturing quality attribute requirements

• choosing, generating, tailoring, and analyzing

design decisions for achieving those

requirements

Now to pull the pieces together…

68

Attribute-Driven Design (ADD) Method

Produce a workable architecture quickly

Before beginning a design process, the

requirements should (ideally) be known…

Requirements (changes) are continually

arriving…

ADD can begin when a set of architecturally

significant requirements is known.

69

Breadth vs Depth First

Personnel availability may dictate a refinement strategy.

Risk mitigation may dictate a refinement strategy.

Deferral of some functionality or quality attribute

concerns may dictate a mixed approach.

All else being equal, a breadth-first refinement strategy

is preferred because

• it allows you to apportion the most work to the most

teams soonest

• allows for consideration of the interaction among the

elements at the same level

70

Generate a Design Solution

Sources of design candidates— patterns, tactics,

and checklists

• initial candidate design will likely be inspired

by a pattern

• possibly augmented by one or more tactics

• consider the design checklists for the quality

attributes

To the extent that the system you’re building is

similar to others, it is likely that the solutions you

choose will solve a collection of ASRs

simultaneously…

71

Verify and Refine Requirements

Your design solution may not satisfy all the

ASRs.

Backtrack – reconsider the design.

Unsatisfied ASRs may relate to

• A quality attribute requirement allocated to the

parent element

• A functional responsibility of the parent

element

• One or more constraints on the parent element

72

What Requirements Are Left?

Requirements assigned to element are

satisfied…

Delegate to one of the children

Distribute among the children

Cannot be satisfied with the current design

• backtrack

• push back on the requirement

73

Done?

Terminate with a sketch of the architecture…

• flesh out the architecture consistent with the

overall design approaches laid out

Satisfy (contractual) specifications…

Exhaust design budget…

Terminating ADD and releasing the architecture

are different decisions.

• early architectural views can be usable

74

Architecture and Business

Perhaps the most important job of an architect is

to be a fulcrum where business and technical

decisions meet and interact…

What are the economic implications of an

architectural decision?

75

Utility Response Curves

Each scenario’s stimulus-response pair provides

some utility (value) to stakeholders

The utility of different possible values for the

response can be compared

Absolute numbers are not necessary to compare

alternatives…

• human beings are better at comparative

estimation

76

77

Some Sample
Utility-Response

Curves

Best and Worst Cases

Best-case quality attribute level – that above

which the stakeholders foresee no further utility

Worst-case quality attribute level – the minimum

threshold above which a system must perform,

otherwise it is of no value to the stakeholders

Current quality attribute level

Desired quality attribute level

Anchor the utility levels on a scale of 0-100 with

the worst and best cases

78

Questions?

Dr. Mark C. Paulk

University of Texas at Dallas

ECSS 3.610, EC31

800 W. Campbell Road

Richardson, TX 75080-3021

Mark.Paulk@utdallas.edu

Mark.Paulk@ieee.org

https://personal.utdallas.edu/~mcp130030/

79

mailto:Mark.Paulk@utdallas.edu
mailto:Mark.Paulk@ieee.org
https://personal.utdallas.edu/~mcp130030/

	Slide 1
	Slide 2: Some More Architectural Questions
	Slide 3: An Example Architecture
	Slide 4: Problem Source
	Slide 5: Use Cases (UC1)
	Slide 6: Use Cases (UC2)
	Slide 7: Use Cases (UC3)
	Slide 8: Use Cases (UC4)
	Slide 9: Use Cases (A Use Case Context Diagram)
	Slide 10: Quality Attribute Scenario Modifiability
	Slide 11: Quality Attribute Scenario Performance
	Slide 12: Quality Attribute Scenario Performance
	Slide 13: Quality Attribute Scenario Reliability
	Slide 14: Quality Attribute Scenario Security
	Slide 15: Quality Attribute Scenario Security
	Slide 16: Quality Attribute Scenario Availability
	Slide 17: Views Template
	Slide 18: Top Level Module Uses View (1)
	Slide 19: Consumer Website
	Slide 20: Order Processing Center Application OpcApp
	Slide 21: OPC Module Decomposition View (2)
	Slide 22: Rationale
	Slide 23: OPC Module Uses View (3)
	Slide 24: Workflowmanager Module Uses View (4)
	Slide 25: Data Model (5)
	Slide 26: Top Level SOA View (C&C 1) Informal Notation
	Slide 27: Top Level SOA View (C&C 1) UML
	Slide 28: Top Level SOA View (C&C 1) soapatterns.org Notation
	Slide 29: Consumer Website Multi-Tier View (C&C 2)
	Slide 30: OPC View (C&C 3) UML
	Slide 31: Deployment View (Allocation 1) Informal Notation
	Slide 32: Deployment View (Allocation 1) UML
	Slide 33: Install View (Allocation 2)
	Slide 34: What Is An “Agile Method”?
	Slide 35: Agile Manifesto
	Slide 36: Architecture in an Agile Context
	Slide 37: Building the Foundation (Schwaber)
	Slide 38: Documentation and YAGNI
	Slide 39: Guidelines for Agile Architecture (Booch)
	Slide 40: Tradeoff Advice
	Slide 41: Documenting Software Architectures
	Slide 42: Uses of Architecture Documentation
	Slide 43: Notations
	Slide 44: Module Views
	Slide 45: Component-and-Connector Views
	Slide 46: Allocation Views
	Slide 47: Architectures Are Abstractions
	Slide 48: UML
	Slide 49: UML Diagrams
	Slide 50: Applying UML
	Slide 51: Monopoly Case Study (Larman)
	Slide 52: Initial Monopoly Domain Model
	Slide 53: Monopoly Partial Domain Model
	Slide 54: Static and Dynamic UML Diagrams
	Slide 55: SSD for a PlayMonopolyGame Scenario
	Slide 56: Documenting an Architecture
	Slide 57: Reverse-Engineered Module Relationships in HDFS (Kazman 2016)
	Slide 58: Documented Module Relationships in HDFS (Kazman 2016)
	Slide 59: Value of Architecture Documentation
	Slide 60: Architecturally Significant Requirements (ASRs)
	Slide 61
	Slide 62: Interviewing Stakeholders
	Slide 63: Quality Attribute Workshop
	Slide 64: Gathering ASRs by Understanding the Business Goals
	Slide 65: Pedigreed Attribute eLicitation Method (PALM)
	Slide 66: Utility Tree
	Slide 67: Tying the Methods Together
	Slide 68: Designing an Architecture
	Slide 69: Attribute-Driven Design (ADD) Method
	Slide 70: Breadth vs Depth First
	Slide 71: Generate a Design Solution
	Slide 72: Verify and Refine Requirements
	Slide 73: What Requirements Are Left?
	Slide 74: Done?
	Slide 75: Architecture and Business
	Slide 76: Utility Response Curves
	Slide 77: Some Sample Utility-Response Curves
	Slide 78: Best and Worst Cases
	Slide 79: Questions?

